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INTRODUCTION

Proteins are molecular machines whose thermodynamic stability and fit-

ness are encoded in their amino acid sequence. Mutations can change the

energetic landscape of a protein and thereby alter its structure and function.

The coupling of sequence changes to protein energetics is a critical aspect of

computational protein design, and is necessary for a complete understanding

of protein evolution, human disease, and drug resistance. The computational

protein design field employs sequence modifications to design novel protein

folds, to modify thermostability and enzymatic activity, and to redesign pro-

tein–protein interfaces.1–5 On the other hand, studies of sequence evolution

have focused on examining the balance between stability and fitness of pro-

teins found in nature,6 for example, the role of the ‘‘stability/activity’’ trade-

off mechanism for residues located in protein active sites.7–9 Furthermore,

directed evolution experiments have designed proteins with novel functions

through a series of functional but destabilizing replacements accompanied by

a series of compensatory mutations highlighting the crucial role that stabiliz-

ing mutations play in the ‘‘evolvability’’ of a protein.6,10,11 This compensa-

tory stabilizing mechanism is also quite prevalent in the evolution of drug

resistance.12,13 The acquisition of drug resistance has been linked to pri-

mary mutations which cause the resistance at the cost of stability, and are

correlated with accessory mutations, which restore activity and stability, as

for example in HIV protease.14 Additional work by Ishikita and Warshel has

shown how effective drug resistant mutations maintain catalytic efficiency

and hence, the local instability within the active site while weakening the

binding affinity to a target drug.15 Therefore, it is important to understand

how sequence changes can alter the thermodynamic stability and fitness of

proteins to relate these effects to drug resistance and disease.6,16,17

To tackle these problems, computational approaches must be sufficiently

accurate to capture the underlying energetics and capable of handling large

amounts of sequence data. Methods such as free-energy perturbation and

thermodynamic integration are in principle the most accurate of these

approaches but are limited to a small number of mutations.18–20 More effi-

cient computational mutagenesis methods based on approximations to the

free-energy change are used to predict protein stabilities for large databases

of proteins. These methods are differentiated by their free-energy function
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ABSTRACT

The coupling of protein energetics and

sequence changes is a critical aspect of

computational protein design, as well as

for the understanding of protein evolu-

tion, human disease, and drug resist-

ance. To study the molecular basis for

this coupling, computational tools must

be sufficiently accurate and computa-

tionally inexpensive enough to handle

large amounts of sequence data. We

have developed a computational

approach based on the linear interaction

energy (LIE) approximation to predict

the changes in the free-energy of the

native state induced by a single muta-

tion. This approach was applied to a set

of 822 mutations in 10 proteins which

resulted in an average unsigned error of

0.82 kcal/mol and a correlation coeffi-

cient of 0.72 between the calculated and

experimental DDG values. The method

is able to accurately identify destabiliz-

ing hot spot mutations; however, it has

difficulty in distinguishing between sta-

bilizing and destabilizing mutations

because of the distribution of stability

changes for the set of mutations used to

parameterize the model. In addition, the

model also performs quite well in initial

tests on a small set of double mutations.

On the basis of these promising results,

we can begin to examine the relation-

ship between protein stability and fit-

ness, correlated mutations, and drug re-

sistance.
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that can be categorized as knowledge-based/statistical,21

empirical,22,23 or physics-based24,25 potentials. These

methods also vary in the extent of the conformational

sampling used to model the structural changes induced

by the mutation. Some approaches only model the

mutated residue using a fixed backbone22,23 while other

methods include flexibility either through side chain

repacking and backbone relaxation26,27 or the genera-

tion of an ensemble of structures.25 Lastly, the unfolded

state is treated differently by these free-energy methods;

unfolded state effects have been included implicitly in

the coefficients of the energy function,22 explicitly repre-

sented by a specific term in the energy potential,23,26,28

or modeled as a short peptide of the original struc-

ture.24,25

Many of these approximate methods, however, demon-

strate limited accuracy according to a recent survey by

Potapov et al.29 In this report, they claim that these

methods are ‘‘good on average and not in the details.’’ It

is reported, that the best method only achieved a correla-

tion coefficient between experimental (DDGexp) and cal-

culated (DDGcalc) relative free-energies of folding (com-

pared to wild type) of 0.59 on a large set of single point

mutations.1 Since, many of the most relevant biological

problems involve multiple mutations, limitations with

single point mutations may translate into large errors,

especially since these methods are not typically tested

with more than one mutation. Therefore, there is a need

for further development of protein stability models with

greater predictive accuracy.

A possible alternative to rigorous free-energy methods

on one hand and purely empirical approaches in the

other are linear interaction energy (LIE) models.30,31

LIE approaches have a foundation in linear response

theory32–34 and the linear response approximation35;

physically motivated interaction energy estimators, which

only require the knowledge of the endpoints of a particu-

lar process are used to estimate the free-energy change.

This approach has been mainly applied to protein-ligand

binding problems.30,35–41 Typically, the LIE formula-

tions use the following functional form to calculate the

free-energy of binding (DGb),30,31

DGb ¼ aðDVvdwÞ þ bðDVelecÞ þ gðDAÞ þ d ð1Þ

where DVvdw, DVelec, and DA are differences between the

quantities measured for the ligand complexed with the re-

ceptor and ligand free in solution. DVvdw and DVelec are

the van der Waals and electrostatic interaction energies of

the ligand with its environment. DA is the change in sur-

face area between the receptor-ligand complex and the

free-ligand. Typically, these energies have been obtained

from Molecular Dynamics or Monte Carlo simulations of

the receptor-ligand complex and free-ligand in explicit sol-

vent. Recent studies in our lab and elsewhere have applied

this formalism to studies in implicit solvent with approxi-

mate and more rigorous derivations.39–41 a, b, g, and d
are adjustable parameters which are obtained by fitting to

experimental binding data.

Linear response has also been used to study protein

stability and protein–protein interactions.42–45 Previ-

ously, Warshel applied the linear response approximation

to the calculation of absolute protein stabilities using an

electrostatic energy function scaled with ‘‘focused’’ dielec-

tric constants.42,43 In addition, the LIE method has been

used to calculate the absolute and relative binding affin-

ities of protein–protein interfaces that contained different

mutations to a crucial residue for binding (treating the

mutated residue as a ligand).44,45 Building on these

ideas and our earlier work with LIE models, we have

devised a LIE approach to calculate relative protein

stabilities between wild type and single point mutations

using the LIE method. For the protein stability problem,

we consider the free-energy change for replacing one pro-

tein residue with another in the folded and unfolded

states (Fig. 1). The difference between the corresponding

wild-type and mutant energetic estimators can be used to

construct a LIE model for the free-energy of folding anal-

ogous to the LIE equation for the binding free-energy.

In this work, we have developed a computational

approach based on the LIE method using the protein

local optimization program46 (PLOP) for conformational

sampling, together with the analytical generalized born

plus nonpolar (AGBNP) implicit solvent model47 and

OPLS force field48,49 to predict the changes in the

Figure 1
Thermodynamic cycle for calculating the relative changes in protein

stability (DDG). The DGwild-type and DGmutant are the free-energy

difference between the folded and unfolded state for the wild-type and
mutant, respectively. The DGf and DGu is the free-energy difference

between mutant and wild-type in the folded and unfolded state,

respectively. The relative free-energy can be expressed as either the

difference between DGwild-type and DGmutant or as the difference between

DGf and DGu.

11The validity of this study was recently questioned by Kellogg et al.27 who noted

that an improper sampling technique lead to the poor results for the Rosetta pro-

gram (r = 0.26 for the data set). Using an optimized protocol, the results were

comparable with the best programs (r = 0.62) in the original survey of protein

stability methods.
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free-energy of the native state induced by single point

mutations. In the following section, we derive the LIE

equations used to calculate protein stability. For the ini-

tial tests of this method, we performed side chain predic-

tion for the structural models of the wild type and mu-

tant structures and applied the LIE protein stability for-

mulation on 822 mutations from 10 proteins. We found

that a separate model based on mutation residue types

(e.g., charged vs. uncharged) showed improved results

compared to a model which did not distinguish between

residue types. All models were validated with jack-knife

prediction tests. This approach has resulted in a correla-

tion coefficient and an average unsigned error between

the DDGexp and DDGcalc of 0.72 and 0.82 kcal/mol,

respectively, which are among the best results reported to

date for current protein stability prediction methods.

MATERIALS AND METHODS

This section describes the methodology used to de-

velop the LIE protein stability protocol. This involved

the selection of single point mutations for our bench-

mark set, structure prediction for the wild-type and mu-

tant structures, and derivation of the LIE equations for

the calculation of relative protein stabilities. We also

summarize in this section the analysis procedures used

to evaluate the results of the LIE protein stability

approach.

Selection of mutations

A benchmark of single point mutations was created

from available DDGexp data in the Protherm database50

and from Guerois et al.22 Mutations were selected if the

wild type residue had a larger van der Waals volume

than the mutant residue, the DDGexp measurement was

performed between a pH of 5 and 9 and an X-ray struc-

ture existed for the wild-type protein; this was based on

criteria applied by Guerois et al.22 Lastly, we required

that the stability measurements were made within a rela-

tively narrow temperature range (between 17 and 378C)
since we neglect effects of temperature variation in the

LIE function.

From the filtered set, the 10 proteins with the largest

number of mutations were selected for our current study

(822 mutations) (Table I). The proteins included in this

study are: Staphyloccal nuclease (PDB ID:1STN51), bar-

nase (PDB ID:1BNI52), FK506 binding protein (PDB

ID:1FKJ53), chymotrypsin inhibitor 2 (PDB ID:2CI254),

protein L (PDB ID: 1HZ655), human tyrosine-protein ki-

nase c-Src (PDB ID:1FMK56), human lysozyme (PDB

ID:1REX57), bovine pancreatic inhibitor (PDB ID:

1BPI58), fibronection (PDB ID: 1TEN59), and T4-lyso-

zyme (PDB ID:2LZM60).

Structure preparation

Structural models of the single point mutants were built

using the torsional angle sampling implementation in the

PLOP46. PLOP is typically used for its side chain and loop

prediction capabilities in homology modeling prob-

lems,46,61,62 force field/implicit solvent evaluation stud-

ies63–66 and protein–ligand binding problems involving

the modeling of receptor-induced fit effects.67 We have

performed a side chain prediction test on a database of

� 2190 polar side chains found in 30 proteins using the

AGBNP implicit solvent model47 with the OPLS-AA force

field,48,49 and measured the accuracy of the predictions

by calculating the heavy atom root mean squared devia-

tion (RMSD) of the side chain of each predicted rotamer

state relative to its corresponding minimized X-ray side

chain rotamer. Using a RMSD cutoff of 1.5 Å, the side

chain prediction accuracy was 79 and 75% with and with-

out the crystal environment, respectively. These results

provide further evidence that the PLOP program can be

employed with the OPLS-AA/AGBNP force field to predict

the side chain rotamer geometries of the wild-type and

mutant residue with good fidelity.

1. Minimization of structures

Minimizations were performed on all of the proteins

using PLOP with the OPLS-AA/AGBNP force field.

The Truncated Newton algorithm68 was employed

with a RMS tolerance of 0.5 kcal/mol/Å using the

default settings in PLOP.

2. Wild-type and mutant folded structure

The side chain conformations for both the wild-type

and mutant forms were built using the side chain pre-

diction algorithm in PLOP. Mutant structures were

based on the wild-type structure and only differed at the

mutated residue position. There are several steps

involved in this algorithm incorporated into PLOP. The

native backbone of the protein is held fixed while a con-

formational search is performed using a highly detailed

Table I
The Average Unsigned Error and Correlation Coefficient Between the

Calculated and Experimental DDG Values for 10 Proteins Using the LIE

Protein Stability Calculation

Protein %a %b Nmut

1stn 24 30 391
1bni 22 23 91
1fkj 14 37 31
2ci2 22 28 58
1hz6 35 48 57
1fmk 5 41 49
1rex 40 12 41
1bpi 21 26 40
1ten 0 51 39
2lzm 7 66 25

%a, percentage residues in an a-helical conformation in the whole protein; %b,
percentage of residues in b-sheet conformation in the whole protein; Nmut, num-

ber of single point mutations.

LIE Method for Protein Stability Prediction
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rotamer library developed by Xiang and Honig.69

Rotamers are eliminated based on an adjustable overlap

factor which is a measure of the extent of the ‘‘clash’’ of

the rotamer with the residues of the protein which are

held fixed. The remaining structures are scored based on

a reduced nonbonded energy and clustered in torsional

space using the K-means algorithm.70 The lowest energy

rotamer is selected from the clustering procedure and the

side chain rotamer is minimized using the TN algo-

rithm.68 This procedure can be performed with or with-

out the crystal packing environment. Side chain predic-

tion was performed on the wild type and mutated resi-

due of interest without crystal packing which should

result in the preferred rotamer conformation in solution.

3. Unfolded state

The unfolded state was represented using a tetrapeptide

model of the local environment of the residue of inter-

est. This peptide contained the two neighboring resi-

dues on either side and was capped with an acetyl

(ACE) and n-methyl amino group (NME). The peptide

was modeled with the wild-type or mutated residues

fixed in the folded state conformation. If the mutated

residue was close to the N-terminus or C-terminus

(1–2 residues away), the charge was maintained on the

corresponding terminus of the unfolded state model.

Scoring

Energies were calculated using the OPLS-AA/AGBNP

force field. The AGBNP model contains the analytical pair-

wise descreening implementation of the Generalized Born

(GB) model71 and a nonpolar hydration term (Gnp).47

The polar solvation energy (Gel) is estimated using the

GB equation

Gel � � 1

2
ð 1
ein

� 1

eW
Þð
X
i

q2i
Bi

þ 2
X
i<j

qiqj

fij
Þ ð2Þ

where ein is the dielectric constant of the interior of the

solute, ew is the dielectric constant for water, qi and qj
are the charges on atom i and j and

fij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij þ BiBj expð�r2ij=4BiBjÞ

q
ð3Þ

where Bi and Bj are the Born radii of atoms i and j and

rij is the distance between atoms i and j.

The nonpolar term contains two components: Gcav

and Gvdw
72,73

Gnp ¼ Gcav þ Gvdw ¼
X
i

giAi þ
X
i

ai

ai

ðBi þ RWÞ3 ð4Þ

Gcav accounts for the work required to make a cavity

in solution and Gvdw accounts for the solute–solvent dis-

persive vdw forces. In Eq. (5), the cavity component is a

function of the surface area of atom i (Ai) and the sur-

face tension parameter assigned to atom i (gi) while the

van der Waals dispersion term is expressed as a function

of an adjustable van der Waals dispersion parameter

(ai),47 the Born radii of atom i (Bi), the radius is of a

water molecule (Rw) and

ai ¼ � 16

3
pqWeiwr

6
iw ð5Þ

where qw 5 0.033428 Å3 is the number density of water

at standard conditions and eiw and riw are OPLS force-

field Lennard Jones parameters for solute–solvent interac-

tions with oxygen atom of TIP4P water.74

LIE formulation for protein stability

The concepts behind the LIE protein stability model

are derived from the ideas of linear response theory and

the linear response approximation.32–35 Protein stability

is a measure of the free-energy difference between the

folded and the unfolded state (Fig. 1). In this case, we

are interested in determining the protein stability of the

wild type (DGwildtype) and the mutant (DGmutant) in

order to calculate the relative stability (DDG). As illus-

trated in Figure 1, DDG is equal to the differences of the

alchemical free-energies of transforming the wild-type

residue into the mutated residue within the unfolded

(DGu) and folded (DGf) states.

According to the LIE formalism, the free-energy

change at each step can be expressed as:

DG / ðD < V >Þ ð6Þ

where D<V> is the change in the residue-environment

average interaction energy in going from wild-type to

mutant corresponding to the step of interest (e.g., the

electrostatic interaction energy for the transformation of

the electrostatic interactions from those of the wild-type

residue to those of the mutant).

We can write for the free-energy of mutation in the

folded state (DGf):

DGf ¼ aðD < V LJ >Þ þ bðD < Vel >Þ þ gðD < G
el
>Þ

þ dðD < Gcav >Þ þ eðD < Gvdw >Þ ð7Þ

where D<VLJ> is the change in the van der Waals inter-

action energy for intramolecular interactions within the

protein, D<Vel> is the change in the electrostatic interac-

tion energy, D<Gel> is the change in the polar solvation

interaction energy, D<Gcav> is the change in the nonpo-

lar energetic component for cavity formation, and

D<Gvdw> is the change in the nonpolar van der Waals

dispersion energy between solvent and the solute. a, b,
g, d, and e are the corresponding LIE coefficients for the

energetic estimators.
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A similar equation applies to DGu yielding the follow-

ing expression for the change in folding energy:

DDGcalc ¼ aðDD<VLJ>Þ þ bðDD<Vel>Þ
þ gðDD<G

el
>Þ þ dðDD<Gcav>Þ þ eðDD<Gvdw>Þ ð8Þ

where DDGcalc is the free-energy difference between the

stability of the mutant and wild-type protein.

DD<VLJ> and DD<Vel> are the intramolecular inter-

action energy contributions to the stability change and

DD<Gel>, DD<Gcav>, and DD<Gvdw> are the solute–

solvent interaction energy contributions to the stability

change.

We define the interaction energy between a given resi-

due and its environment as the difference between the

total energy of the protein and the total energy of the

protein without the residue of interest. This definition,

which for pairwise decomposable potentials, reduces to

the sum of pairwise interactions between the atoms of

the residue and the other protein atoms, is a generaliza-

tion of the interaction energy, which is applicable for

nonpairwise decomposable potentials such as the implicit

solvent solvation free-energy. The goal is to estimate the

side chain’s contribution to the (free) energy of each

(folded/unfolded) state. The energy of state-1 was first

calculated for the structure with all of the solute–solute

and solute–solvent interactions present. The second step

was to eliminate interactions of the side chain for the

second state in the calculation. The nonbonded and polar

solvation energy terms were turned-off by setting the

partial charges and the well depth of the Lennard Jones’s

equation to zero for side chain atoms (starting with Cb

atom). The nonpolar hydration was turned off by setting

gi and ai to zero. The difference between state-1 and

state-2 represents the side chain’s interaction energy with

the other residues of the protein and the solvent. Since,

the same structure is used for the state 1 and state 2, the

covalent energy terms cancel out. This was done for both

the folded and unfolded state model.

The LIE calculation for mutations involving glycine

and proline is different since the partial charges of the

backbone are different from the other residues. When the

partial charges of the HA3 atom of the glycine or the

side chain of the proline are set to zero, the backbone is

left with an excess charge. For all other residues, the

backbone remains neutral after the charges are turned

off. For the second state corresponding to glycine and

proline, we created a model where the partial charges of

all the atoms in the residue were set to zero. Hence, the

difference between state-1 and state-2 includes the elec-

trostatic and reaction field interaction energy for the side

chain and backbone of the residue in both the folded

and unfolded state model. By taking the difference

between the folded and unfolded state, the effect of turn-

ing off the charges on the backbone is eliminated.

The LIE equation requires five LIE coefficients for the

energy terms. This fitting was performed using the multi-

ple linear regression module in the statistical analysis

program R. The whole set of 822 single point mutations

was used for training and testing. Jack knife tests as

described below were performed by iteratively training

on 95% of the data and testing on the remaining 5% of

the data set. We have developed two models for DDG
prediction (Tables II and III). For Model-1, five coeffi-

cients were obtained while for Model-2, five coefficients

were obtained for each of the three mutation residue

types (neutral, charged, and glycine/proline). Coefficients

were eliminated on the basis of P-values (P < 0.05 to

reject the null hypothesis for a particular coefficient). If

coefficients of terms with complimentary physical effects

(e.g., electrostatic and reaction field interaction energies

or intramolecular and solute–solvent van der Waals inter-

action energies) were of the same magnitude, their corre-

sponding energy estimators were combined and refit. In

this work, most of the models were fit to two coefficients

except for the neutral residue model (Model-2).

We evaluated the predictive value of each of the models

in this study (Table II). We employed a jack knife approach

where the corresponding jack knife Pearson correlation

coefficient (rjack) and average absolute error (<|error|jack>)

are reported. For Model-1 and Model-2, fitting resulted in

rjack and <|error|jack> values that were very close to their

values for the entire data set (Table I), which suggests that

these models are not biased by particular points in their

training sets; this was not the case for Model-2 (charged).

For Model-2 (charged), the corresponding rjack and

<|error|jack> were slightly worse than the values reported

for the entire data set, which is indicative of some type of

bias in our training set (Table I). Nevertheless, Model-2

demonstrates more accuracy and precision than Model-1

even though Model-2 has more parameters (Model-1 has 2

parameters while Model-2 has 9 parameters).

Multiple mutations

A small set of double mutations from serine protease in-

hibitor was taken from the Protherm database. These

Table II
Fitting Results for Neutral, Charged, and Glycine/Proline Mutations,

Individually and Combined

Residue type
Model
no. np a b g D e <|error|>jack rjack

All 1 2 0.32 0.07 0.07 0.00 0.00 0.95 0.60
Neutral 2 5 0.17 0.13 0.21 20.19 20.94 0.83 0.67
Charged 2 2 0.17 0.07 0.07 0.00 0.00 0.73 0.38
Glycine/Proline 2 2 0.53 0.08 0.08 0.00 0.53 0.94 0.75

np, number of LIE coefficients; a, b, d, D, and e are the LIE coefficients; |error|jack,

average unsigned error for jack-knife validation; rjack, Pearson correlation coeffi-

cient for the jack knife validation. The average unsigned error for the jack knife

validation is in units of kcal/mol.Models 1 and 2 were fit using the equation:

DDGcalc ¼ aðDDVLJÞ þ bðDDVelÞ þ gðDDG
el
Þ þ dðDDGcavÞ þ eðDDGvdwÞ
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mutations were previously tested with the Eris program;26

this approach uses a hybrid knowledge-based/physical

energy function and allows for backbone flexibility. Our

structural models for the wild-type and mutant state were

built using the multiple side chain prediction module in

PLOP. LIE calculations were performed using LIE equa-

tions and coefficients developed for Model-2. In 16 of the

17 cases, the double mutant was composed of two muta-

tions of the same residue type so the coefficients for that

specific residue type were selected for that DDG calcula-

tion. For the double mutant with different mutations types

(T58AE60A), we employed the coefficients developed for

the charged residue model in the LIE equation for protein

stability since electrostatic interactions are likely to domi-

nate the effect of the double mutation.

Analysis

Both Pearson correlation coefficients and average abso-

lute errors between the calculated and experimental DDG
were the statistical measures used to evaluate the different

models and groups of mutations in this study. Neverthe-

less, we note that the Pearson correlation coefficient is the

gold standard used to evaluate the quality of the stability

change calculations since the absolute error is highly influ-

enced by the relatively small range of the DDG data.

In Table III, we summarize the performance of the LIE

algorithm at identifying two different types of mutations:

stabilizing/destabilizing and hot-spot mutations similar

to Potopov et al.29 Stabilizing mutants had DDGexp < 0

kcal/mol while destabilizing mutants had DDGexp > 0

kcal/mol. Hot spot mutations had |DDGexp| > 2 kcal/mol

while nonhot spot mutations had |DDGexp| < 2 kcal/mol.

The stability ranges of the DDGcalc and DDGexp values

were compared using the following measures: accuracy,

sensitivity, and specificity, which were functions of the

number of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). Accuracy is cal-

culated using the following expression:

Accuracy ¼ TPþ TN

Total
ð9Þ

this evaluates the number of correct predictions rela-

tive to the total number of predictions. Sensitivity evalu-

ates the number of correctly identified TP relative to the

total number of positives. Sensitivity is calculated with

the following expression:

Sensitivity ¼ TP

TPþ FN
ð10Þ

Specificity evaluates the number of correctly identified

TN relative to the total number of negatives. Specificity

is calculated with the following expression:

Specificity ¼ TN

TNþ FP
ð11Þ

In the analysis summarized in Table IV, hot spot resi-

dues are defined as positives while nonhot spot residues

are defined as negatives.

DSSP75 was used to classify the secondary structure of

the wild type residues of each protein. Surface areas were

calculated using the Shrake-Rupley algorithm.76 The

fraction of the surface area exposed for each wild type

residue (SAres) was calculated with this expression

%SAres ¼ SAf

SAexp

� 100 ð12Þ

where SAf is the surface area of the wild-type residue and

the SAexp is the surface area of the completely solvent

exposed residue. We approximated SAexp by calculating

the surface area of the wild-type residue in a tetrapeptide

(GXG where the X represents the wild-type residue)

capped with an ACE and NME. Buried residues were

defined as having less than 10% of their side chain

exposed and exposed residues were characterized as hav-

ing more than 50% of their side chain exposed.

RESULTS

Calculation of stability changes using
Model-1 and Model-2

In this work, we tested the LIE protein stability

approach on 822 single point mutations and compared

Table III
Comparison of the Results for Different Mutation Residue Types Using

Model 1 and Model 2

Residue-type Number of mutations Model-1 Model-2

All 822 0.61 (0.94) 0.72 (0.82)
Neutral 448 0.60 (0.88) 0.69 (0.80)
Charged 175 0.38 (0.84) 0.45 (0.72)
Glycine/Proline 199 0.72 (1.15) 0.77 (0.94)

The correlation coefficient is listed with the average absolute error in parenthesis

(in units of kcal/mol).

Table IV
Prediction of Stabilizing/Destabilizing and Hot Spot Mutations

Model

Stabilizing/Destabilizing
mutations

Hot spot
mutations

Accuracy
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

1 87 79 54 90
2 89 82 66 90

Stabilizing mutations had DDGexp < 0 and destabilizing mutations had DDGexp >
0. Hot spot mutations had |DDGexp| > 2 and nonhot spot mutations had

|DDGexp| < 2. Accuracy measures how many DDGcalc have been predicted to be in

the same direction of stability as the DDGexp.Sensitivity measures how many hot

spot mutations were identified correctly relative to the total amount of hot spots.

Specificity measures how many nonhot spots were correctly identified relative to

the total number of nonhot spots. There are 727 destabilizing mutations, 71

stabilizing mutations and 255 hot spot mutations.

Accuracy ¼ TPþTN
Total

; Sensitivity ¼ TP
TPþFN

; Specificity ¼ TN
TNþFP
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the calculated results with corresponding experimental

results. This set contained large to small mutations from

10 different proteins, which contained varying secondary

structural content. The first LIE protein stability model

(Model-1) was parameterized using the data from all of

the mutations (Table I). The correlation coefficient and

the average absolute error between the calculated and ex-

perimental DDG were 0.61 and 0.94 kcal/mol, respectively

[Table III and Fig. 2(a)]. These results are comparable

with the best performing programs available today as

reported by Potopov et al.29

The second LIE protein stability model (Model-2) was

parameterized to treat different types of mutations. We

divided our mutations into three groups: neutral,

charged, and glycine/proline mutations. The neutral

group training set contained mutations where the side

chain of the wild-type and the mutant residue had a zero

net charge. The charged group training set contained

mutations involving ionizable residues (R, K, D, and E)

for the wild-type or mutant residue. The rationale behind

separating the charged and neutral mutations is that the

magnitude of the electrostatic and reaction field energies

are much larger for charged groups and will dominate

the fit of the electrostatic and polar solvation LIE coeffi-

cients. Secondly, for the GB type implicit solvent models

the polarization of charged residues is underestimated

within the protein compared to neutral residues resulting

in the overstabilization of salt bridges. As a result,

implicit solvent models have treated charged and neutral

residues separately using different internal dielectric con-

stants.43,65 The remaining residue group contains muta-

tions where the wild type residue is being mutated to a

glycine or where proline is the wild type residue being

mutated to a smaller residue. These mutations typically

cause the largest changes to the structure and conforma-

tional entropy of the protein backbone and therefore

should be treated differently than other mutations.

The three residue-type models exhibited correlation

coefficients ranging from 0.45 to 0.77 and absolute errors

ranging from 0.80 to 0.94 kcal/mol (Table III and Fig. 3).

The lowest correlation coefficient was from the predic-

tion of mutations of charged groups (r 5 0.45); however,

the absolute error of these mutants was quite low (0.72

kcal/mol). The largest absolute error was from predicting

mutations to glycine (0.92 kcal/mol); it may be harder to

reproduce the destabilizing effects of a glycine mutation

since our sampling protocol is limited to side chain pre-

diction in this work and the remainder of the protein is

not allowed to relax. Nevertheless, these residue sub-types

demonstrated an improvement in the correlation coeffi-

cient and absolute error between 7 and 18% with respect

to an overall fit of LIE coefficients without respect to res-

idue type (Table III). With respect to predictions for the

whole set of 822 mutations, the correlation coefficient

and absolute error between the DDGcalc and the DDGexp

is 0.72 and 0.82 kcal/mol, respectively, which is superior

to Model-1 (0.61 and 0.94 kcal/mol) but the real advant-

age/improvement of Model-2 over Model-1 is the predic-

tion of experimental outliers as described in the follow-

ing section.

Why does Model-2 perform better than
Model-1?

The main difference between the performance of

Model-1 and Model-2 is the improvement in the predic-

tions of hot spot mutations (|DDGexp| > 2 kcal/mol).

The sensitivity measure quantifies how many hot spot

Figure 2
Calculated DDG (DDGcalc) versus experimental DDG (DDGexp) for Model-1 (A) and Model-2 (B). Model-1 was trained on all mutation types and

Model 2 was trained on separate mutation types (Model-2) (B). The dotted black line corresponds to the x 5 y line and the solid black line

corresponds to the least squared fit line between DDGexp and DDGcalc. The correlation coefficients were 0.61 and 0.72, for Model 1 and Model 2,

respectively (see Table I).
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mutations were correctly identified (true positive) com-

pared to the total number of hot spot mutations pre-

dicted (true positive 1 false negative) and improved by

12% using Model-2 over Model-1 (Table IV). Further-

more, 80% of the calculated outliers in Model-1 are hot-

spot mutations (an outlier is defined as having an abso-

lute error larger than two standard deviations above the

average absolute error of Model-1). Figure 4 shows the

performance of Model-2 with the outliers of Model-1. By

fitting individual mutation types (neutral, charged, and

Gly/Pro), 90% of these mutations demonstrate improved

absolute errors relative to the results for Model-1. A no-

table example is E75V from Staphyloccal nuclease which

had a predicted DDGcalc of 6.33 and 2.70 kcal/mol with

Model-1 and Model-2, respectively, relative to the

DDGexp value of 2.30 kcal/mol. Model-2 is able to

decrease the range of the DDGcalc and the number of

outliers which increases the correlation between DDGcalc

and DDGexp. The rest of the results section will focus on

the analysis of results using Model-2.

Performance of Model-2 with different types
of mutations

Model-2 exhibits a very good correlation and a low av-

erage absolute error between experimental and calculated

DDG values (Table III); values which are superior to

those reported by Potapov et al.29 To further understand

the predictive abilities of Model-2, we evaluated the per-

formance of mutations categorized by the surface area

exposure and secondary structure of the wild-type resi-

due and mutation type (alanine or nonalanine mutagene-

sis) (Table V). Alanine (mutagenesis) and nonalanine

mutations had similar correlation coefficients but nonala-

nine mutations had a higher average absolute error; this

group contained all of the mutations involving glycine,

which demonstrated the highest absolute error of all

three residue types in Model-2 (Table III). Mutations

categorized by secondary structure had correlation coeffi-

cients which ranged from 0.54 to 0.75. The turn popula-

tion was the smallest population of mutations which

appeared to affect the value of the correlation coefficient.

The greatest variation in the results was seen amongst

the groups divided up based on surface area exposure.

Figure 3
Calculated DDG (DDGcalc) versus experimental DDG (DDGexp) for Model-2. Model-2 involved separate fitting on mutations involving neutral (A),

charged (B), and glycine/proline residues (C). The dotted black line corresponds to the x 5 y line and the solid black line corresponds to the least

squared fit line between DDGexp and DDGcalc. The correlation coefficients for the neutral, charged, and glycine/proline residue models were 0.69,

0.45, and 0.77, respectively (see Table I).

Figure 4
Absolute errors for Model 1 outliers using Model 2. All of the outliers

had an absolute error higher than 2.5 kcal/mol using Model 1 (42

outliers). The dotted line is the x 5 y line. Any points below this line

represent the outliers which had lower absolute errors for Model 2

compared to Model 1 (� 90% in this case).
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Mutations involving highly exposed residues had the low-

est correlation coefficient of all the different groups (r 5
0.35). The poor performance of surface exposed muta-

tions may be due to the DDG range for mutations of this

type; the DDG range is very small which reflects the high

dielectric solvent screening of these mostly polar and

charged residues. Previous studies have also reported

higher correlation coefficients for mutations involving

buried residues compared to exposed residues.22,25–27

In contrast, the mutations involving buried residues had

the highest absolute error of all groups of mutations

(average absolute error 5 1.01 kcal/mol). Buried residues

tend to be more sensitive to sequence changes. In this

case, 57% of the buried mutations are destabilizing hot

spot mutations (<|DDGexp|> 5 2.52 kcal/mol, Table VI)

with an average absolute error of 1.12 kcal/mol.

One of the apparent shortcomings of the LIE protein

stability approach is distinguishing between stabilizing

and destabilizing mutations. According to Table IV,

Model-2 is quite successful at predicting whether a muta-

tion is stabilizing or destabilizing (89% accuracy). Never-

theless, the sensitivity was quite different for the predic-

tion of destabilizing and stabilizing mutations. Mutations

with DDGexp values greater than 0 kcal/mol were pre-

dicted with a sensitivity of 95%, in contrast, mutations

with DDGexp values less than 0 kcal/mol were predicted

with a sensitivity of 23%. Hence, Model-2 performs

poorly at correctly identifying stabilizing mutations. This

is likely an effect of the distribution of DDGexp values in

our benchmark set used to parameterize the LIE model.

It is composed of mainly destabilizing mutations (91%);

and the range of DDG values for stabilizing mutations

which is very small.

What effect does structure prediction have
on energy prediction?

We turn next to examine how the accuracy of the

structure predictions affect stability change predictions.

We evaluated the accuracy of the structural predictions

using the criterion for a correct structure prediction that

all v dihedrals deviated from the X-ray rotamer geometry

by less than �308 and an energy criterion that the abso-

lute error between the DDGcalc and DDGexp was less than

1.5 kcal/mol (Table VI). Complete structural data,

including both wild-type and mutant PDB structures,

was available for 39 of the mutations. The distribution of

mutation residue-types is different in this small set of

mutations (67% neutral/18% charged/15% glycine/pro-

line) with structural data compared to the larger bench-

mark set of 822 mutations (55% neutral/21% charged/

24% glycine/proline). Correspondingly, the accuracy of

the stability change calculations varies between these two

sets; 72% of the stability changes were correctly predicted

in the set where the structure of wild-type and mutant

was known, in contrast, 86% of the stability changes

were predicted correctly for the benchmark set of 822

mutations. Therefore, the small set includes a large per-

centage of mutations from the benchmark set that were

challenging stability change predictions. For this set, the

percentage of correct stability change predictions is

reduced from 76 to 60% when the predicted side chain

deviates by more than �308 from the X-ray rotamer ge-

ometry (Table VI). In the cases of correct structure and

incorrect stability change predictions (24%), all the

mutations are from large residues (K, F, L, or Y) to ala-

nine or glycine. Modeling additional structural reorgan-

ization and relaxation may be needed to capture the real

effect of the mutation on the surrounding residues.

Nevertheless, our results indicate that accurate structural

models of wild-type and mutant enhance the ability to

predict stability changes.

The accuracy of the stability change predictions is also

affected by the range of possible energies that are

sampled by a residue; this is highly dependent on the

amino acid type, location of the residue and the energy

function. For 60% of the incorrect structure predictions,

DDGcalc was predicted within �1.5 kcal/mol. An explana-

tion for this effect is that for these cases the X-ray and

the incorrectly predicted rotamer state are approximately

isoenergetic that results in very similar DDGcalc values.

For example, this effect is observed for the stability calcu-

lation of the S44A mutant in T4-Lysozyme (2LZM)

where the wild-type rotamer was predicted incorrectly

Table V
The Average Unsigned Error and Correlation Coefficient Between the

Calculated and Experimental DDG values for the Different Structural

Features

Type NMUT <|DDGexp|> <|DDGcalc|> <|error|> r

Alanine mutagenesis 385 1.53 1.46 0.78 0.72
Non-Alanine 437 1.70 1.68 0.85 0.73
Beta 310 2.07 2.05 0.87 0.73
Helix 217 1.60 1.60 0.79 0.76
Turn 90 1.10 1.03 0.84 0.54
Coil 202 1.20 1.21 0.76 0.67
Exposed 257 0.69 0.62 0.60 0.35
Buried 277 2.52 2.18 1.01 0.69

NMUT, number of residues; <|DDGexp |>, average absolute experimental DDG;
<|DDGcalc|>, average absolute calculated DDG; <|error|>, average unsigned error

(units of kcal/mol).

Table VI
The Effect of Correct Structural Predictions on Energetic Predictions

Structural predictions
Energetic
predictions Count

Conditional
probability

Correct Correct 22 0.76
Correct Incorrect 7 0.24
Incorrect Correct 6 0.60
Incorrect Incorrect 4 0.40

In the training set, there were 39 mutations which had corresponding structural

information for the wild-type and mutant structures according to the Protherm

database.
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(Fig. 5). In the X-ray structure, the hydroxyl group of

the S44 side chain is solvent exposed and relatively close

to crystal water, in contrast, the S44 side chain is forming

a hydrogen bond with backbone carbonyl group of N55

for the predicted rotamer (Fig. 5). For the S44A mutant,

the DDGcalc values are 0.46 and 20.07 kcal/mol (relative

to DDGexp 5 20.34 kcal/mol) using the minimized wild

type and the predicted rotamer as the wild-type model.

In both cases, this method is robust enough to predict

the correct stability changes despite the different side

chain geometries. Nevertheless, stability change predic-

tions are more sensitive to the side chain conformations

of charged residues, which are susceptible to forming salt

bridges. For the stability calculation of the K116A mutant

in Staphylococcal nuclease (1STN), the wild type side

chain geometry was predicted incorrectly and the abso-

lute error of the stability change was greater than 1.5

kcal/mol. In the X-ray structure, the K116 side chain is

solvent exposed and distant from most residues of the

protein except from crystal water (Fig. 6). In contrast,

the predicted rotamer state of K116 side chain forms an

ion pair with the D122 side chain. If the correct wild

type rotamer state is used, the DDGcalc changes from 1.02

to 0.24 kcal/mol which is in better agreement with exper-

imental measurements (DDGexp 5 -0.70 kcal/mol). The

error in the DDGcalc prediction of the K116G mutation

appears to be a result of the erroneous salt bridge confor-

mation formed by K116.

DISCUSSION

Physical interpretation of the LIE models

The LIE model approximates the free-energy change

with an empirical scoring function motivated by linear

response theory which employs physically motivated

energy estimators. In the protein stability LIE model,

these estimators capture the differences between the ener-

getic interactions of the mutant and the wild-type pro-

tein in the folded and unfolded state. For our calcula-

tions of the unfolded state, we use a local tetrapeptide

model of the residue of interest with its two N- and C-

termini neighboring residues. The role of this model is to

capture possible residual structure in the unfolded state

compared to a random coil model. By using the folded

and unfolded state in our calculations, we see a signifi-

cant increase in the accuracy of the stability calculations

relative to only using the folded state (data not shown).

Therefore, the unfolded state model does play a role in

the stability calculation by screening the short range

folded state interactions.

On the basis of Eq. (6), the relative free-energy change

(DDG) can be expressed as the difference between the

residue-environment interaction energy in the folded

(D<Vf>) and unfolded state (D<Vu>) in going from

the wild-type to the mutant where i is one of the compo-

nents of the energy.

DDGi / ðD < V i
f > �D < V i

u >Þ / ðDD < Vi >Þ ð13Þ

The sign of DD<Vi> determines whether a mutation

is stabilizing or destabilizing relative to the wild-type

protein. If the DD<Vi> is positive, the wild-type is con-

tributing more favorably to the folding free-energy than

Figure 5
Incorrect structural predictions with accurate energy predictions. In

each case, the wild-type rotamer geometry deviated from the crystal

structure reference state by more than 308 for the DDGcalc of the

S44A mutant in T4-Lysozyme (2LZM). The X-ray model is shown in
blue and the predicted models is shown in green. All of the atoms

in licorice are heavy atoms except for the hydrogen of the hydroxyl

group of S43.

Figure 6
Incorrect structural predictions with incorrect energy predictions. In

this case, the wild-type rotamer geometry deviated from the crystal

structure reference state by more than 308 for the DDGcalc of the K116A

mutant (A) in staphylococcal nuclease (1STN). The X-ray model is

shown in blue and the predicted model is shown in green.
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the mutant (DDGi > 0), in contrast, if the DD<Vi> is

negative, the mutant is contributing more favorably to

the folding free-energy than the wild-type. The magni-

tude of DD<Vi> indicates how important a particular

energy estimator is to determining the relative free-

energy change of the mutant compared to the wild-type.

To maintain the physical interpretation of the sign in Eq.

(13), the LIE coefficients should be positive. This is the

case for all of the models except the neutral residue

model (Model-2) [Supporting Information Fig. 1(A)].

Here, the DDVLJ energies are shifted to more positive val-

ues since a large number of mutations in this group are

buried hydrophobic residues that are mutated to smaller

residues which results in an unfavorable loss of vdw con-

tacts. DDVel and DDGel values are smaller but have more

outliers because of the mutations involving surface

exposed polar residues. All of the energies have positive

coefficients except for the coefficients for the DDGvdw

and DDGcav terms. The negative coefficient for the

DDGvdw term is a result of fitting coefficients for the

DDVLJ and DDGvdw energy estimators separately; these

estimators are typically fit with the same coefficient

which is positive.41 Separate fitting of each energy esti-

mator improves the results relative to a model where the

DDVLJ and DDGvdw energy estimators are combined;

however, the physical meaning behind each of the coeffi-

cients is lost since both estimators are highly correlated.

We hypothesize that the negative value for the coefficient

of the DDGcav energy estimator reflects conformational

reorganization effects that are not treated explicitly in

our model. The corresponding coefficient absorbs the

reorganization free-energy difference between the wild-

type and the single point mutant; this is always inversely

correlated to the change in the side chain size during the

mutation, as absorbed by its change in exposed surface

area. In a previous protein-ligand binding study based on

LIE models, negative coefficients were also observed for

the surface area cavity free-energy estimator41 and it was

suggested that this energy term was statistically correlated

with reorganization effects as well.

The model for mutations involving charged residues

was originally fit using all five energetic descriptors but

only required two coefficients after statistical refitting

(Supporting Information Fig. 2). The driving force

behind this model appears to be the electrostatic (DVele)
and polar solvation (DGel) energies that span the broad-

est ranges of all the five energies. As a result, coefficients

for these energetic descriptors are smaller than the cor-

responding values for the neutral residue model. The

resulting energy distribution range decreases dramatically

when these energies are combined. This effect is well

known; it results from the fact that DGel is a reaction

field, which largely cancels the direct electrostatic energy

term, DVele. The DDGcav and DDGvdw terms are less sig-

nificant for fitting the charged residues since most of

the charged residues are located on the surface (89%).

These terms may become more significant as we add

more mutation types to the model (small to large

mutations).

The model for glycine/proline mutations was also orig-

inally fit with five coefficients but only required two

coefficients during refitting (Supporting Information Fig.

3). DDVLJ makes the largest contribution to this model

since the mutation involves the removal of the whole

side chain and the loss of the most contacts. The coeffi-

cients for the DDVLJ and DDGvdw energy estimators are

similar for this model; this is consistent with the previ-

ous LIE derivation for protein–ligand interactions in

implicit solvent41 as well as previous derivations in

explicit solvent where the vdw estimator includes solute–

solute and solute–solvent vdw forces scaled by one

coefficient.30 Since, the training set included charged res-

idue to glycine mutations, the distributions and coeffi-

cients of the DDVel and DDGel energy estimators were

similar to those observed for mutations involving

charged residues.

Performance of mutations involving charged
residues

The mutations involving charged residues demon-

strated the worst fit of the mutation residue-type models.

Fitting was affected by the DDGexp range. The DDGexp

range was the smallest for the mutations involving

charged residues and largest for the mutations involving

glycine/proline; this was similar to the trend in the corre-

sponding correlation coefficients (Table III and Fig. 3).

The DDG range (both experiment and calculation) is the

largest for mutations involving glycine and proline since

they typically involve large structural changes to the

native state of the protein, in contrast, the smallest range

is observed experimentally for mutations involving

charged residues. Mutations involving charged residues

are usually located in solvent exposed positions and

because of solvent screening have a smaller effect on sta-

bility. Furthermore, the charged residue model training

set constituted 40% of the stabilizing mutations in our

data set which are the most difficult type of mutations to

predict. DDG predictions of stabilizing mutations were

challenging because the LIE model was trained on a

benchmark set containing mostly destabilizing mutations.

Unfortunately, this bias is difficult to avoid since there

are many more destabilizing than stabilizing muta-

tions.77,78

Comparison with previous methods

We compared the results for single point mutations

from the LIE protein stability model (Model-2) to previ-

ous results from Potapov et al.29 For the six different

approaches, correlation coefficients ranged from 0.26 to

0.59 and the average absolute errors ranged from 1.00 to
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1.69 kcal/mol. On the basis of these results, the LIE pro-

tein stability model is superior to these other approaches

(r 5 0.72; <|error|> 50.82). Nevertheless, the original

studies report significantly higher correlation coefficients

for these methods, ranging from 0.62 to

0.75.22,24,25,27,79 The results from the protein survey

were worse because the testing sets were larger and more

diverse than in the original studies and unbiased through

the removal of mutations used in the original training

sets for each method. In addition, these programs may

be optimized by the labs that developed them, and the

comparison studies may not be using the programs in

the optimum way.27

Effects of sampling for the mutant
structural model

The LIE protein stability approach appears to be

among the best programs available to calculate stability

changes despite the lack of structural relaxation in the

current version of the LIE models. In our calculations,

the protein–protein interactions are on average underesti-

mated for the folded mutant because surrounding side

chains do not repack to optimize the interactions with

the smaller mutant residue. Nevertheless, the reorganiza-

tional cost for repacking the side chains around the

mutated residue is also not accounted for and these two

effects tend to cancel. Secondly, structural relaxation may

only be beneficial for certain types of mutations. Yin

et al.26 and Kellogg et al.27 noted that using a flexible

backbone sampling improved the correlation between the

calculation and experiment for mutations where the

wild-type residue was smaller than the mutant residue.

Lastly, structural relaxation may also cause errors in the

stability change calculation if the sampling approach

introduces erroneous structural changes into the mutant

structures. Kellogg et al. noted that using backbone relax-

ation actually degraded the results for the entire set of

mutations.27

Treatment of conformational and solvation
entropy

We note that the LIE protein stability equations are

missing explicit terms for the treatment of entropy. Free-

energy changes produced by linear response models,

such as the one employed here, implicitly include con-

formational entropy effects through the linear response

expressions, which relate potential energy differences to

free-energy differences. Moreover, the target of our calcu-

lations is relative stabilities resulting from the net contri-

butions of the differences between the unfolded and

folded states of the wild-type and mutant protein. The

LIE models capture these relative entropic effects only in

an average way. Solvent entropic effects are implicitly

included in the solvation free-energies modeled in this

work by AGBNP effective potential, although important

structural waters may not be correctly modeled under

the continuum approximation on which the model is

based.

Multiple mutations

Our broader interest is to apply this method to pro-

teins with multiple mutations. We applied the LIE pro-

tein stability approach to a small group of double muta-

tions from serine protease inhibitor using Model-2. This

subset of 17 mutations is included in the Protherm data-

base and has also been tested with the Eris approach.26

Figure 7 shows a scatter plot of calculated versus experi-

mental DDG values for this subset of 17 mutations. Sur-

prisingly, the correlation coefficient and average absolute

error (r 5 0.80 and <|error|> 5 0.69 kcal/mol) improve

compared to the single point mutation set. Using a fixed

backbone approach, a correlation coefficient between ex-

perimental and calculated DDG values of 0.69 (compared

to 0.64 with single point mutations on a larger set) was

reported for the Eris method, which is similar to the

trend in our results. The improvement of double muta-

tions over single point mutations is probably due to a

cancellation of errors. In this test set, the positive cooper-

ativity of the DDGexp for the double mutations compen-

sates for the errors from the original model of single

Figure 7
Calculated DDG (DDGcalc) versus experimental DDG (DDGexp) for a set

of serine protease inhibitor (2CI2) double mutants. The dotted black

line corresponds to the x 5 y line and the solid black line corresponds

to the least squared fit line between DDGexp and DDGcalc. The

correlation coefficient is 0.80 using Model 2.
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point mutations which underestimate DDGcalc relative to

DDGexp. On the basis of these results, it appears that the

LIE protein stability approach is a potentially useful tool

for calculating protein stability changes caused by multi-

ple mutations that will be improved by incorporating

structural relaxation in order to accurately capture the

effects of cooperativity between mutated residues.

CONCLUSIONS

In this work, we have presented an approach to calcu-

late relative protein stabilities based on the LIE model to

estimate free-energies and the PLOP to sample side chain

rotamer states. On a large set of single point mutations,

this method leads to results that are comparable to or

better than results reported for existing methods even

without including structural relaxation in the calcula-

tions. Future work will focus on using a better sampling

approach to allow for more extensive relaxation of the

protein structure following mutations and a revised ver-

sion of the AGBNP implicit solvent model,80 which

includes a first shell solute–solvent term and an

improved model for protein salt bridge formation. With

further development of this approach to model multiple

mutations, we can begin to integrate sequence data and

energetic information to examine the relationship

between protein stability, fitness, and drug resistance.
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