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Abstract

Continuum solvent models predict a quadratic charge dependence (linear response) of the free energy of a system
of charged solutes. The relation between this prediction and the structure of the solvation shell around the solutes is
discussed. Studies of the derivative of the free energy with respect to the charges for different reference states are
shown to be a convenient way of testing the linear response assumption without resorting to the standard free energy
perturbation method. We illustrate this with a system of two oppositely charged ions in aqueous .solution, where
nonlinearities are observed before the full charging process is completed. Since molecular mechanics (MM)
simulations preserve the full n0nlinearity of the problem, they are well suited to the investigation.of the conditions
under which linear response accurately reflects the behavior of the system. The error wheia using linear response
theory to calculate the free energies of charging is estimated to be as large as 10-20%.
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In simulations of biomolecular systems the
long-range electrostatic forces play a predomi-
nant role. Not only do proteins and nucleic acids
have nonzero partial charges on their surfaces,
which sometimes dictates the introduction of a
few counterions to achieve net zero charge, but
the solvent medium par excellence, water, is highly
polar.

There are essentially two complementary ap-
proaches to biomolecular simulations. On the one
hand, the s0-called continuum model (CM) [1,2]
replaces the solvent, which accounts for the bulk
of the simulation system, by a dielectric contin-
uum. On the other hand, molecular mechanics
(MM) simulations [3,4] consider the biomolecule
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surrounded by a large number of solvent
molecules. There are substantial differences be-
tween the two approaches which make each bet-
ter suited to the calculation of different proper-
ties. There exists also some hybrid models which
treat part of the Solvent explicitly while, at the
same time, attempting to deal with the effect of
the bulk solvent in some sort of mean field ap-
proximation [5-9]. Depending on the properties
under s~udy these models might be considered as
CM or MM; we will not discuss them further
except to note that they share with CM the use of
a sharp boundary to enclose a region with explicit
atoms.

An advantage, in principle, of MM.over CM is
that it relies less on empirical parameters; in
particular the .dielectric response of the solvent is
obtained from the simulation itself, and is not
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assumed to be known. It has been proved for
some systems that MM simulations with Ewald
summation produce the correct dielectric re-
sponse [10-12]; there are also indications that it
might work for biomolecules in solution, provided
a large enough number of water molecules is
included [13,14].

Since CM assumes that the response of the
dielectric medium is known and local, it is com-
putationally faster and the bulk properties of the
solvent are better taken into account.. However,
the water molecules close to the solute are re-
placed by an unphysical sharp dielectric bound-
ary, and it is not clear how much error is intro-
duced ¯ by this approximation. There is evidence
that the dielectric response function is not charge
independent close to the solute [15,16]. Jayaram
et al. [15] have shown by explicit MM calculations
that the solvent around a spherical ion responds
in a peculiar nonlinear way, becoming highly
structured when the ionic charge is moderately
high.

Both MM and CM treat solutes as a collection
of point ’ charges, which are renormalized to take
into account, at least in a mean field, way, the
effect of the solvent on the electronic wavefunc-
tions. This approach, however, neglects electronic
polarizability, which is a truly many-body effect
and has been lately recognized as a potentially
significant source of errors [17-19]. Recent work
has been directed, with some success, to the
inclusion of electronic polarizability in MM simu-
lations [18,20-29], as well as in CM calculations
[30,311.

Despite these shortcomings, studies of bio-
moleculesin solution using CM have yielded very
reasonable results [2,31-33]. Jayaram et al. [15]
studied the charging free energy of one ion using
MM to test the validity of the continuum(Born)
treatment of ion hydration. They found that, for
their particular system, the continuum prediction
of a quadratic charge dependence of the free
energy is reproduced for values of the ionic charge
up to some limiting value of approximately + 1.1
au. Other studies have shown that this limiting
value is system dependent, and can be less than 1
au [16,34]. ~

As discussed by Warshel and co-workers [5,35]

the calculation of pKa shifts in proteins is a very
stringent test of the model for the electrostatic
interactions, besides its being of great interest in
the theoretical studies of protein stability [36].
Since proteins have nonzero partial charges on
the surface, it is expected that the first solvation
shell should be highly structured and thus a CM
approach does not in principle seem adequate.
Karplus and Bashford [32] have used the finite
difference Poisson-Boltzmann [1] method to esti-
mate the pKas of lysozyme and found relatively
good agreement with experiment. Honig and co-
workers, however, using the same approach [33],
found poor agreement for some of the ionizable
groups in T4 lysozyme and traced it to the exis-
tence of a salt bridge on the surface, which serves
as a seed for solvent structure. To improve their
results they added a few explicit waters in this
low dielectric region but without much success.
Their interpretation that water molecules close to
the saltbridge; take part in hydrogen bonding
suggests once again that continuum predictions
can lead to substantial errors when highly struc-
tured solvation shells exist around certain charged
groups. Other instances when this may be a prob-
lem are. near active sites of proteins, where water
molecules are known to form part of the aqueous
hydrogen.-bond network [37].

A simple electrostatic argument can also be
used to analyze the effect of the artificial bound-
ary on the reaction field felt by charged groups
on the surface of a protein. Consider just two
charges, say both of charge + 1 au, situated at a
distance a from the center of a dielectric sphere
of dielectric constant e1 embedded into a contin-
uum of dielectric constant ez > q. As the charges
approach the dielectric boundary, of radius b > a,
the. effect of the boundary on the electrostatic
energy becomes more and more pronounced.
Solving the electrostatic problem one finds for
the interaction energy of two + 1 au charges the
expression

332
V= -- ~]Pt(cos O)
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Fig. 1. Reaction-field contribution to the electrostatic energy
of two + 1 au charges located 5/~ apart at a distance a from

¯ the origin as a function of the radius b of the dielectric
bofindary (assumed spherical). The upper curve corre.sponds
to a = 10 ~ while the lower corresponds to a = 15 A. The
interior dielectric constant was taken to be equal to 4 and the
exterior to 78. At a distance of 5 ~ with e = 4 the direct
Coulomb interaction energy is equal to 15.5 kcalimol.

where Pt(x) is the Legendre polynomial of order
l and 0 is related to the distance d between the
charges by the equation

2a(1- cos 0)=d. (2)
The first term inside the brackets gives the inter-
action energy in the absence of the dielectric
boundary, and the second gives the contribution
from the reaction field. Fig. 1 shows this contri-
bution for two different choices of a as a function
of the dielectric boundary radius b (the distance
between the charges was fixed at 5 A; the inner
dielectric constant was set to 4 and the outer to
78, as is customary in the CM approach). Since
the dielectric boundary, is not physical but rather
an artifact of the CM approach the results should
not depend strongly on the position of this
boundary [38]. For groups that are buried inside a
protein the typical effect of the boundary would
be as in the upper curve (a = 10/~ or less) and it
is dear from the figure that the position of the
boundary does not have a great effect in this
case. However, .for groups on the surface the
situation is more like that depicted in the second
curve; since the boundary cannot be chosen too
far away from the surface of the protein (other-
wise the effect of the first water shells would not

be taken into account), the choice of its position
will have a large effect on the interaction energy.
For instance, moving the boundary from 16 to
16.5/~ changes the energy by 3.32 kcal/mol. In
comparison, the interaction energy in the absence
of the boundary is about 16.6 kcal/mol.

CM, as a particular example of a linear re-
sponse model, predicts a quadratic dependence
on the ionic charges of the free energy, F. To test
the range of validity of this assumption it is
helpful to use a relation, derived from micro-
scopic considerations, between the derivative of
F with respect to the charges and the mean value
and fluctuations of the electrostatic potentials at
the positions of the ions. Looking at the deriva-
tive instead of F is convenient because it ampli-
fies the deviations; however, it should be borne in
mind that large errors in OF/Oqi do not necessar-
ily imply a large error in F. Let Z({qi}) be the
partition function of the collection of ions of
charges {qi} immersed in a solvent. We assume
that the ions are fixed in space and denote the
coordinates of the solvent molecules by {X}. Then
the partition function can be written as

Z({ qi} ) = f d{ X} exp[-fl ~i qiVi( X)] e-~H(x),

(3)
where Vi(X) is the electrostatic potential pro-
duced by the solvent at the position of ion i and
H(X) collects all other interaction terms. Writing

In Z({q,}) = -~F({qi}) (4)

and taking the logarithmic derivative of Z with
respect to qi we find

~F-- = (v,).

CM gives a mean value (Vi) that is proportional
to the charges thus giving rise to the relation

F ~.._~1~E (6)

between the free energy of charging the ions and
the internal energy, E.

It is convenient to rewrite Z in a way that does
not explicitly mention the solvent coordinates.
This can be done by replacing the integration
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over {X} by an integration over the values {vi} of
the electrostatic potentials at the ions. To this
end we introduce the integral

(7)

where the integral is taken over all solvent coor-
dinates that satisfy the constraints Vk(X) -- vk for
all k. In terms of d/z we can write

<f(Vl,.o.,Vn) >

fdtz({vi})f(Vl,...,Vn) exp(--f ~_~qkVk)
k

f dlx({vi}) exp(-f ~]q,v~)

for any function f( ) that depends only on the
values of the electrostatic potentials {Vi} at the
positions of the charges. From this it follows that

(9)

is the probability distribution of the values of the
electrostatic potentials at these positions. Note
that the effect of the solvent is completely em-
bodied in d/x but the probability distribution de-
pends on the values of the charges. In particular,
using Eq. (5), we obtain the expression

SdlJ,({’i}) exp(-f k~qk’k)

(lO)

OF--({q}) =

If we choose now a reference set of charges,
{q[a}, and write qk = q~k~ + gqk we can expand
Eq. (10) to first order in {gqi} to obtain the
relation, valid in a neighborhood of the reference
charges,

0F \ref ref
a~ef~

Oqi ( { q} ) < Ui ]
fie --

k

(11)
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Fig. 2. Plot of the derivative of the free energy of charging one
ion with respect to the ion’s charge as’a function of the
charge, The data has been taken from [15].

where gvs = vs - (v~>ref and the averages are
taken in the reference state (~qk is expressed as

qk -- qf~a). Integrating this equation yields

F({ q}) const.-t- E < \ref/ _ref~= Vi2 (qi--q.i)
i

f E < \ref., " qiref)
~Ui~Uk) (qi2 i,k

X(qk--q~f), .... (12)

valid in a neighborhood of the reference state
[16,39].

As Jayaram et-al. [15] have shown, for an ion
in aqueous solution (V~> is well approximated by
a piecewise linear function over a broad range of
charges. Their Fig. 3, reproduced in part here as
Fig. 2, shows that Eq. (11) is a good approxima-
tion but with different parameters for.q < 1.1 au
and for q > 1.1 au. They arguedthat therefore
the simple CM approach .is valid for the calcula-
tion of PKaS since the first range (q < 1.1 au)
follows closely the CM predictionand the change
of regime does not occur for interesting charges.
The breakdown at 1.1 au reflects an essential
nonlinearity in the response function which, in-
terestingly, gives rise to (at least) two-regions of
linearity. In their article they traced this break-
down to the sudden appearance .of structure in
thefirst solvation shell of the ion. Maroncelli and
Fleming [34] found that the structure of the water
around the solute, is very dependent on solute
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size. Significant structure is observed for their
’small’ solute when the charge is just less than 7
all.

Levy and co-workers [16] have studied the
charging free enoergy of two ions separated by a
distance of 10 A under the assumption that Eq.
(12) is valid over a broad range of charge values
(the so-called Gaussian approximation). They find
that this assumption works well but not for the
complete charging process, from 0 to + 1 au,
implying that the response function must contain
some nonlinearity, before full charge is attained.
For a system of two ions of charge +q and -q
Eq. (11) becomes .
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Fig. 3. Plot of the derivative of the free ener~ of charging ~o
ions with respect to the absolute value of the ions’ charge as a
Nnction of the charge. The data has been taken from [16].
The solid fine corresponds to the reference state with both
ions uncharged. The dashed line corresponds to the reference
state with charges + 1 au and -1 au.

2 ~ ref
--~(q--qref)((~t)+--~t)-) ) ,

(13)

where v_+ are the electrostatic potentials at the
position of the ions. Since Levy et al. [16] com-
puted the parameters entering. Eq. (13) for two
different reference states, one with both ions
uncharged and the other with charges + 1 au and
-1 au, we can estimate the crossover point by
plotting Eq. (13) and finding the value of q~at
which the two lines intersect (see Fig. 3). It is
clear from this figure that nonlinearities in the
response function become relevant well before
the full charging process is complete.

These studies show that it is quite possible for
a System of charges in aqueous solution to show
deviations from linear response even for .small
charges. An interesting question is whether, or
under which conditions, ~F/~qi is. piecewise lin-
ear. From Eq..(11) it can be seen that to ascertain
the breakdown of linear response we do not need
to know the free energies of solvation over a wide
range of charges; it suffices to compare the linear
dependencies of OF/Oqi in small neighborhoods,
of some set of charge states chosen a priori. Of
course, to identify the points where linear re-
sponse breaks down the full free energy (or its
derivative) must be known. Our group has taken

a first step in this direction with a MM study of
the PKaS of ionizable groups in lysozyme [39].

Comparing Figs. 2 and 3 one can notice that
for one ion the slope decreases in absolute value
as the charge increases (a clear signal of dielec-
tric saturation), whereas in the case of two ions it
increases with increasing charge, at least in the
region of charges that have been studied in [16].
It should be noted that this positive feedback
("anti-saturation") was also observed by Maron-
celli and Fleming [34] in their study of a single
ion in solution.

From Fig. 3 we can also estimate that the error
in the calculation of the charging free energy,
going from zero to full charge, when using the
linear-response result (the q r~f _-- 0 Curve), is about
10-20%. Although this calculation pertains only
to the particular system studied in ref. [16], it is
an indication that nonlinear effects due to the
molecular structure of the solvent are not negligi-
ble. Since MM preserves the nonlinear nature of
the problem, it is well suited to investigate the
magnitude of these effects and their system de-
pendence. This should not be taken, however, to
mean that MM and CM differ only in that the
latter does not incorporate nonlinearities in the
response function, or that the former would be of
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value only in nonlinear regimes. In fact, it is not
yet clear whether either approach reproduces the
correct linear response regime, or whether
many-body effects can be taken into account by
simply renormalizing two-body interaction pa-
rameters.

In our group we are interested in the effects
due to the solvent structure around a solute, with
a strong emphasis on dielectric properties. In
particular, we are focused on understanding the
dielectric response of biomolecules in aqueous
solutions at a microscopic level. Since electro-
static forces are at the heart of the question, their
correct treatment is of the utmost importance.

Until recently MM simulations of biomolecules
had to sacrifice the correct treatment of the elec-
trostatic interactions to avoid unacceptably long
computer runs. This sacrifice takes several forms:
(a) the number of solvent molecules had to be
kept small (typically about 3000), forcing the sim-
ulation box to be barely larger than the protein
itself and producing spurious correlations be-
tween water molecules on opposite sides of the
protein; and (b) truncating the electrostatic inter-
actions at a finite distance instead of using the
commonly accepted Ewald summation method to
correctly incorporate the effect of periodic
boundary conditions. Schreiber and Steinhauser
[14,40] have given evidence that such a truncation
can strongly affect the protein dynamics and it is
known [41-43] that it affects the orientational
correlations of solvent molecules.

Advances in MM algorithms [44-50] and the
advent of massively parallel supercomputers are
opening the way to large-scale simulations of
biomolecules with explicit solvent. Our group is
currently testing an implementation of the hierar-
chical multipole methods that runs on networks
of workstations using PVM [51] as well as or/ a
Thinking Machines’ CM-5 using their native
CMMD message-passing library. As part of our
group’s ongoing effort to study electrostatic ef-
fects on proteins we plan to apply it in the near
future to the calculation of the pKas of lysozyme
to investigate the breakdown of linear response
as described above. We also plan to apply the
program to the calculation of the charging free
energy of ions in aqueous solutions, which pro-

vides a well-defined framework for the study of
the structure of the first solvation shell.

This work was supported by an NIH grant
(GM-30580), and by the Columbia University
Center for Biomolecular Simulations (NIH
P41RR06892).
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